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EXECTIVE SUMMARY 

This report compares the mode I boundary correction factor solutions for two symmetric 
elliptical cracks emanating from a straight-shank hole. A variety of methods were used to 
generate the solutions. A global-intermediate-local (GIL) hierarchical approach was developed 
using the finite element method (FEM). Comparisons were made with the following methods: 
the FEM with the equivalent domain integral, semiempirical boundary correction factor 
equations, the finite element alternating method, the boundary element method with the crack 
opening displacement approach, the boundary element method using special crack-tip elements, 
and the three-dimensional weight function method. The boundary correction factor solutions 
were within a band of ±3% of the average solution. 
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INTRODUCTION


Accurate stress-intensity factor (SIF) solutions are required to conduct thorough damage 
tolerance analyses of structures containing cracks. Exact closed form SIF solutions for cracks in 
three-dimensional solids are often lacking for complex configurations; therefore, approximate 
solutions must be used. Over the past two decades, considerable effort has been placed on 
developing computationally efficient methods which provide highly accurate SIF solutions for 
cracks in three-dimensional bodies. A review of methods for the analysis of cracks in three-
dimensional solids was provided in reference 1. Various methods have been used to obtain SIF 
solution for surface and corner cracks in plates including the conventional finite element method 
(FEM) [2-8], the finite element alternating method (FEAM) [9-12], the boundary element 
method (BEM) [13-15], and the three-dimensional weight function method (WFM) [16-19]. 
With advances in pre- and postprocessors, computer hardware, and improvements in equation 
solvers, time savings are being realized in both geometry development and analysis of complex 
models. With computational tools in place, SIF solutions required for damage tolerance 
assessments of cracked complex structures can be obtained. 

Two steps are typically used to obtain SIF solutions. First, the stress and displacement fields for 
the structure under the prescribed loading conditions are calculated. Second, the SIF solutions 
are extracted from the governing stress and displacement fields. One of the most commonly used 
approaches to determine SIF solutions is the FEM. Several techniques have been developed 
using FEM to approximate SIF solutions for cracks in three-dimensional solids including the 
crack opening displacement (COD) method [20], the virtual crack extension (VCT) method [21-
22], the virtual crack closure technique (VCCT) [23], and the J-integral method using the 
equivalent domain integral method (DIM) [8,9,24,25]. Stress-intensity factor equations have also 
been obtained by fitting empirical equations to some of the SIF solutions obtained by finite 
element analyses [26]. 

The FEAM [9-11] is an iterative approach alternating between a finite element analysis of the 
uncracked finite body and an analytical solution of a crack subjected to traction forces in an 
infinite medium. The FEAM is a computationally efficient approach to obtain three-dimensional 
SIF solutions. Since the SIF is calculated using the analytical solution, the crack front does not 
need to be modeled explicitly in the finite element analysis. Only the stress concentrations due to 
the geometry of the configuration, i.e., holes and cutouts, need to be accurately modeled. Thus, a 
relatively coarse mesh having a simple configuration of finite elements can be used in the FEAM 
compared with conventional FEM used in fracture problems. 

In the three-dimensional BEM, only the surface of the body needs to be modeled. Thus, a model 
may be built relatively quickly compared with conventional FEM. Two programs that use the 
BEM have been recently developed for fracture mechanics studies. The first, FRacture ANalysis 
Code in 3-Dimensions (FRANC3D), is a special purpose fracture mechanics and crack growth 
simulation program which integrates a graphics user interface pre- and postprocessor, a boundary 
element solver for three-dimensional solids, and a generalized shell analysis solver [27-30]. SIF 
solutions are obtained using the COD method. Plane strain assumptions are used in the 
calculation. The second program, Fracture Analysis by Distributed Dislocations in 3-Dimensions 
(FADD3D) is a weakly singular, symmetric Galerkin BEM for the analysis of linearly elastic, 
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isotropic, three-dimensional solids containing fractures [31,32]. An important aspect of the 
numerical implementation in FADD3D is the use of a special crack-tip element which has 
degrees of freedom along the crack front that correspond to the three modes of stress-intensity 
factors which are solved for directly. The method is applicable to a wide class of fracture 
problems and has proven to provide highly accurate SIF solutions using relatively coarse meshes. 

The WFM [16-19] is an efficient and accurate technique for determining three-dimensional SIF 
solutions. Using this approach a three-dimensional body is decomposed into thin slices in the 
thickness and width directions. Each slice is assumed to be in a state of generalized plane stress. 
The three-dimensional effect is accounted for by forces acting on the crack surface due to shear 
loading between slices and the restraining effect of the uncracked area on the cracked slices. 

Several investigators have used hierarchical level approaches to study cracks in fuselage shell 
structure [33-37]. The advantage of a hierarchical level approach is that model development and 
analysis efforts are simplified by breaking a problem down to manageable levels of relative scale 
and detail. Boundary conditions at each level of analysis are passed onto subsequent analysis 
levels. At the highest level, a global analysis is conducted using known prescribed boundary 
conditions applied to the fuselage which was typically idealized using shell elements to model 
the skin and beam elements to model the substructure (frames and stringers). The purpose of the 
global analysis is to obtain accurate stress and displacement fields in the area of interest resulting 
from the known boundary conditions. These stress and displacement fields are used as boundary 
conditions in the next level, a submodel that is a dimensional subset of the previous level and is 
modeled with a more refined mesh with higher substructure detail. Higher order shell elements 
are typically used to model the substructure. At the final level, a local analysis is conducted on a 
highly refined mesh focused at the crack tip to determine the SIF solutions. The number of levels 
used in a hierarchical level approach depends on the complexity and size of the problem being 
analyzed. A two-level global-local approach was sufficient to obtain accurate results for large 
cracks terminating in the skin bay region of fuselage structure [36, 37] whereas a three-level 
global-intermediate-local approach was required to analyze small cracks emanating from rivet 
holes in fuselage lap joint [33]. 

In this study, a three-level global-intermediate-local (GIL) hierarchical approach was developed 
using FEM for the fracture mechanics analysis of cracks in three-dimensional solids. 
Verification studies of the GIL approach were conducted using a problem consisting of two 
symmetric cracks emanating from a straight-shank hole under remote tension. First, convergence 
studies were done to determine the level of mesh refinement needed for the global, intermediate, 
and local models. Next, the use of conventional and singularity elements in the local model was 
assessed. The solution obtained from the GIL approach was verified and compared with the 
solutions obtained by several investigators using a variety of methods including the equivalent 
domain integral method (DIM), semiempirical SIF equations, the FEAM, the BEM with the 
crack opening displacement approach (FRANC3D), the BEM with special crack-tip elements 
(FADD3D), and the three-dimensional Weight Function Method (WFM). Table 1 lists the 
methods that were compared and the participants who provided the solutions for each method. 
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CONFIGURATION AND LOADING 

The problem analyzed in this study consists of a pair of symmetric elliptical cracks emanating 
from a straight-shank hole in a plate under far-field tension, figure 1. The half height of the plate 
(H) and half width (W) were chosen to be large enough to have a negligible effect on the stress-
intensity factors (H/W = 2) and the ratio of the straight-shank hole radius to plate width (R/W) 
was 0.2. The ratio of hole radius to thickness (R/t) was 2. The plate has a modulus of elasticity, 
E = 1 psi, and Poisson’s ratio, ν = 0.3. 

A symmetrical elliptical corner crack configuration was analyzed with a crack depth to plate 
thickness ratio (a/t) of 0.2 and a crack depth to crack length ratio (a/c) of 0.8. A remote tension 
load was applied with a constant stress, St = 1.0 unit force per unit area. 

DEFINITION OF STRESS-INTENSITY FACTOR 

The mode I stress-intensity factor (KI) at any location along the crack front under tensile loading 
is given as 

KI = St  
 

 π
t 

R 
, 

c 

a 
, 

t 

a 
F

Q 

a 
t ,ϕ  

(1)
 

where the boundary correction factor, Ft (tensile), is calculated along the crack front as a function 
of the parametric angle.  The crack dimensions and parametric angle, ϕ, are defined in figure 1. 
The parametric angle is the angle measured with reference to the circle contained within the 
ellipse defining the crack front. The angle, ϕ, is measured from the surface of the plate to the 
boundary of the straight-shank hole. The shape factor for an ellipse, Q, is the square of the 
complete elliptic integral of the second kind [2] 

 a 
1.65 

a  
Q = 1 + 1.464  for ≤ 1 

 c  c  
1.65  (2) 

a
Q = 1 + 1.464

 
c  for > 1 

 a  c  

GLOBAL-INTERMEDIATE-LOCAL HIERARCHICAL APPROACH 

In the hierarchical approaches, model development and analysis efforts are simplified by 
breaking a problem into manageable levels of relative scale and detail. Boundary conditions at 
each level of analysis are passed onto subsequent analysis levels. A three-level global-
intermediate-local (GIL) hierarchical finite element approach was used in this study to obtain the 
SIF solutions for the problem as illustrated in figure 2. The commercially available finite 
element program ABAQUS 5.6 [38] was used for the analysis. In the first step (global level) of 
the GIL approach, an analysis of the plate subjected to the prescribed loading conditions was 
conducted. The crack was modeled in the global level using conventional elements. A typical 
mesh for the global level is shown in figure 2. Due to symmetry in the geometry and loading, 
one quadrant of the plate was modeled. A typical mesh for the global model contained 1312 
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twenty-noded brick elements. Along the top edge, a 1-psi stress was applied. Symmetry 
boundary conditions were applied as indicated in the figure. 

In the second step (intermediate level), an analysis was conducted in the high stress gradient 
region near the straight-shank hole. A refined mesh, shown in figure 2, of the region near the 
hole was used to accurately capture the stress concentrations. The crack region was modeled in 
the intermediate level using conventional elements. A typical mesh for the intermediate model 
consisted of 5764 twenty-noded brick elements. Symmetry boundary conditions were applied to 
the crack plane. The boundary conditions for the intermediate model were taken from the global 
model using the submodelling features in ABAQUS. 

In the final step (local level), a local analysis was conducted of a region around the crack front. 
A highly refined mesh with elements orthogonal to the crack front was used. The length of the 
elements along the crack front was less than or equal a/20 where a is the minor crack length of 
the elliptical crack. Two types of meshes were used as shown in figure 2. The first mesh, 
containing only conventional elements, consisted of 1728 twenty-noded brick elements. The 
second mesh, consisting of 1152 twenty-noded brick elements, contained a ring of singularity 
elements surrounding the crack front. The singularity elements are twenty-noded isoparametric 
brick elements with one side collapsed along the crack front and with the midside nodes on the 

element sides adjacent to the collapsed side shifted to the quarter point to obtain the 
singularity. In both local meshes, symmetry boundary conditions were applied on the crack 
plane. The intermediate model using the submodelling features in ABAQUS provided 
displacement boundary conditions along the perimeter of the local model. 

1 r  

The J-integral was calculated along the crack front using the equivalent domain integral (EDI) 
method. For cases where there is no mixed mode fracture and assuming a plane strain elastic 
material response, the mode I SIF at any point along the crack front can be calculated from the J-
integral as 

KI =
2 1 

JE 

ν −
(3) 

RESULTS AND DISCUSSION 

CONVERGENCE STUDIES. 

Convergence studies were done to determine the level of mesh refinement needed for each of the 
global, intermediate, and local models. Typical results for the convergence study are shown in 
figure 3 and table 2. Results are presented in terms of the variation of the boundary correction 
factor, Ft, as a function of the parametric angle, ϕ, for two meshes of the local model. The first 
mesh, Mesh A, consisted of 216 elements with 12 elements along the crack front. The second 
mesh, Mesh B, was much more refined consisting of 1728 elements with 24 elements along the 
crack front. Both meshes used conventional elements. As shown, the results obtained using the 
different mesh refinements differed by less than 0.8% indicating a converged solution was 
obtained. 
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CONVENTIONAL VERSUS SINGULARITY. 

The use of conventional and singularity elements to model the crack front in the local model was 
compared. The boundary correction factor, Ft, calculated using conventional and singularity 
elements as a function of the parametric angle, ϕ, is shown in figure 4 and table 2. The crack 
front was modeled using conventional elements (Mesh B) and singularity elements (Mesh C). As 
shown in figure 4, excellent agreement was obtained where the results from the two crack front 
meshes differed by less than 0.6%. 

Modeling the crack front using singularity elements has the advantage of capturing the square 
root singularity and obtaining accurate near-field stresses and displacements. However, the 
process of forming a singularity element from a conventional brick element by collapsing the 
side nearest the crack front and moving the midside nodes to the quarter point can be an 
extremely tedious and time consuming task. Modeling the crack front using conventional 
elements is much easier and the use of conventional elements in fracture mechanics studies is 
viable provided that the elements are of proper size (approximate length of a/20) and are 
orthogonal to the crack front. When the equivalent domain integral method is used to determine 
the J-integral, it is not necessary to have extremely accurate stress and displacement fields. As 
the volume contour around the crack front used in the calculation of the J-integral increases, the 
influence of the high stress and displacement gradients dissipates. 

SOLUTION COMPARISONS. 

The solution obtained from the GIL approach was verified and compared with the solutions 
obtained by other investigators using the methods listed in table 1. The following methods were 
used: the FRacture ANalysis Code in 3-Dimensions (FRANC3D) conducted by Cornell 
University, the three-dimensional Weight Function Method (WFM) conducted by University of 
South Carolina, the finite element alternating method (FEAM) conducted by Knowledge 
Systems, Incorporated, the finite element method (FEM) with the equivalent domain integral 
integral (DIM) conducted by Northwestern University [7], and the Fracture Analysis by 
Distributed Dislocation in 3-Dimension (FADD3D) conducted by the University of Texas, 
Austin. In addition, the semiempirical SIF equation developed at NASA Langely [26] was used 
in the comparison. For the problem defined in figure 1, the semiempirical equation [26] is given 
by 

2 
 a 

4  
Ft = 

 
M1 + M 2 

 
a  + M3   

g1g2 g3g4 fϕ fw (4) 
  t   t   

where the parameters in equation 4 are provided in table 4. 

The results of the various methods are shown in figure 5 and table 3 as boundary correction 
factors along the crack front as a function of the parametric angle, ϕ. Excellent agreement was 
obtained among the methods listed in table 1 as shown in figure 5. The dashed line indicates the 
result from the semiempirical equation [26]. Results from the FRANC3D, FEAM, WFM, DIM, 
FADD3D, and GIL were averaged. The results calculated using the semiempirical SIF equation 
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were similar to the average solution. All solutions were within a narrow band of ±3% about the 
average solution; the ±3% band is shown by the solid lines in figure 5. 

CONCLUDING REMARKS 

A global-intermediate-local (GIL) hierarchical approach was developed using the finite element 
method (FEM). The objective was to develop and verify the GIL approach by comparing the 
GIL results to results from various other methods. Using the GIL approach, the boundary 
correction factors along the crack front were calculated using the equivalent domain integral 
method. Convergence studies were done to determine the level of mesh refinement needed for 
the each of the global, intermediate, and local models. The use of conventional elements to 
model crack front provided the same boundary correction factor results as using singularity 
elements. 

For the problem of two symmetric cracks emanating from a straight-shank hole under remote 
tension, a comparison was made with a variety of other methods: finite element method (FEM) 
with the equivalent domain integral method (DIM), semiempirical equations, the finite element 
alternating method (FEAM), boundary element method (BEM) with the crack opening 
displacement approach (FRANC3D), the BEM using special crack-tip elements (FADD3D), and 
the three-dimensional Weight Function Method (WFM). Results for all the methods were in 
excellent agreement and fell within a band of ±3% of the average of all the solutions. These 
results verified the GIL approach developed in the current study. 

These results also show that there are a variety of computational methods that can be used to 
calculate accurate boundary correction factor solutions for cracks in three-dimensional solids. It 
should be pointed out, however, that these are all sophisticated, complex methods that require a 
knowledgeable user. Those methods that use a mesh (whether boundary element or finite 
element methods) also require convergence studies to insure that the mesh is refinement 
sufficient to obtain the desired accuracy. 
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FIGURE 3. CONVERGENCE STUDY COMPARISON OF RESULTS FROM TWO MESHES 
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FIGURE 4. COMPARISON OF RESULTS USING CONVENTIONAL AND SINGULARITY 
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FIGURE 5. COMPARISON OF RESULTS FROM ALL SOLUTION METHODS


TABLE 1. STUDY PARTICIPANTS AND METHODS USED


Principle Investigator Affiliation Method 

James Newman [26 ] 
NASA Langley Research 
Center (LaRC) 

Semiempirical SIF Equation 

Paul Wawrzynek 
Cornell University (CU) The FRacture ANalysis Code 

in 3 Dimensions (FRANC3D) 

Wei Zhao 
University of South Carolina 
(USC) 

Three-Dimensional Weight 
Function Method (WFM) 

Daniel S. Pipkins 
Knowledge Systems 
Incorporated (KSI) 

Finite Element Alternating 
Method (FEAM) 

Brian Moran [7] 
Northwestern University 
(NWU) 

Domain Integral Method 
(DIM) 

Mark Mear 
University of Texas, Austin 
(UTA) 

Fracture Analysis by 
Distributed Dislocations in 
3 Dimensions (FADD3D) 

John Bakuckas 
FAA William J. Hughes 
Technical Center 

Global-Intermediate-Local 
(GIL) 
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TABLE 2. BOUNDARY CORRECTION FACTORS FROM THREE MESHES OF

LOCAL MODEL


Mesh A – Conv. Mesh B – Conv. Mesh C – Sing. 
ϕ Ft ϕ Ft ϕ Ft 

3.008 
6.011 
9.185 

12.344 
15.672 
18.975 
22.436 
25.866 
29.452 
32.985 
36.692 
40.337 
44.157 
47.909 
51.837 
55.713 
59.760 
63.769 
67.970 
72.122 
76.495 
80.837 
85.427 

2.740 
2.669 
2.660 
2.637 
2.621 
2.622 
2.617 
2.633 
2.640 
2.666 
2.686 
2.718 
2.750 
2.790 
2.829 
2.879 
2.925 
2.984 
3.040 
3.108 
3.185 
3.248 
3.377 

1.464 
2.928 
4.434 
5.940 
7.490 
9.036 

10.625 
12.211 
13.841 
15.465 
17.129 
18.782 
20.485 
22.176 
23.912 
25.645 
27.408 
29.166 
30.963 
32.751 
34.574 
36.386 
38.241 
40.082 
41.973 
43.847 
45.756 
47.658 
49.611 
51.535 
53.517 
55.477 
57.492 
59.486 
61.531 
63.573 
65.656 
67.728 
69.858 
71.970 
74.150 
76.314 
78.532 
80.755 
83.037 
85.314 
87.655 

2.741 
2.679 
2.696 
2.670 
2.656 
2.641 
2.630 
2.621 
2.611 
2.607 
2.601 
2.602 
2.597 
2.604 
2.602 
2.611 
2.614 
2.623 
2.631 
2.641 
2.653 
2.665 
2.678 
2.696 
2.708 
2.731 
2.744 
2.766 
2.784 
2.806 
2.827 
2.852 
2.875 
2.901 
2.926 
2.955 
2.984 
3.015 
3.046 
3.081 
3.115 
3.155 
3.195 
3.238 
3.291 
3.310 
3.397 

1.464 
2.928 
4.434 
5.940 
7.490 
9.036 

10.625 
12.211 
13.841 
15.465 
17.129 
18.782 
20.485 
22.176 
23.912 
25.645 
27.408 
29.166 
30.963 
32.751 
34.574 
36.386 
38.241 
40.082 
41.973 
43.847 
45.756 
47.658 
49.611 
51.535 
53.517 
55.477 
57.492 
59.486 
61.531 
63.573 
65.656 
67.728 
69.858 
71.970 
74.150 
76.314 
78.532 
80.755 
83.037 
85.314 
87.655 

2.713 
2.690 
2.683 
2.660 
2.647 
2.629 
2.621 
2.609 
2.601 
2.594 
2.591 
2.590 
2.586 
2.592 
2.591 
2.599 
2.603 
2.610 
2.620 
2.628 
2.641 
2.651 
2.666 
2.681 
2.696 
2.715 
2.731 
2.750 
2.770 
2.790 
2.813 
2.836 
2.860 
2.885 
2.912 
2.937 
2.969 
2.997 
3.030 
3.062 
3.100 
3.136 
3.179 
3.220 
3.273 
3.302 
3.382 
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TABLE 3. BOUNDARY CORRECTION FACTORS FROM A VARIETY OF APPROACHES


FRANC3D 
CU 

WFM 
USC 

FEAM 
KSI 

DIM 
NWU 

FADD3D 
UTA 

ϕ Ft ϕ Ft ϕ Ft ϕ Ft ϕ Ft 

1.125 
5.619 
10.211 
14.635 
18.999 
23.288 
27.604 
31.820 
36.037 
40.135 
44.219 
48.179 
52.021 
55.939 
59.742 
63.529 
67.217 
70.905 
74.599 
78.229 
81.890 
85.515 
89.120 

2.830 
2.774 
2.703 
2.653 
2.604 
2.613 
2.619 
2.638 
2.672 
2.683 
2.717 
2.746 
2.776 
2.828 
2.860 
2.905 
2.961 
2.996 
3.061 
3.145 
3.242 
3.372 
3.533 

0.125 
5.619 
11.322 
16.947 
22.460 
28.065 
33.832 
39.389 
45.041 
50.557 
56.315 
61.919 
67.477 
75.015 
82.536 
86.237 
89.920 

2.826 
2.594 
2.493 
2.470 
2.492 
2.518 
2.552 
2.590 
2.644 
2.712 
2.796 
2.882 
2.964 
3.075 
3.240 
3.324 
3.433 

0.000 
5.000 
10.000 
15.000 
20.000 
25.000 
30.000 
35.000 
40.000 
45.000 
50.000 
55.000 
60.000 
65.000 
70.000 
75.000 
80.000 
85.000 
90.000 

2.561 
2.554 
2.556 
2.567 
2.588 
2.619 
2.654 
2.697 
2.748 
2.800 
2.855 
2.914 
2.973 
3.030 
3.088 
3.141 
3.191 
3.238 
3.279 

1.737 
3.810 
6.303 
9.308 
12.897 
17.213 
22.389 
28.605 
36.058 
45.000 
55.080 
63.146 
69.602 
74.765 
78.891 
82.197 
84.840 
86.950 
88.648 

2.592 
2.592 
2.570 
2.545 
2.524 
2.511 
2.511 
2.531 
2.578 
2.654 
2.755 
2.864 
2.968 
3.064 
3.150 
3.224 
3.283 
3.324 
3.324 

2.000 
4.000 
8.000 
12.000 
19.000 
26.000 
35.500 
45.000 
54.500 
64.000 
71.000 
78.000 
82.000 
86.000 
88.000 

2.697 
2.673 
2.649 
2.625 
2.608 
2.620 
2.670 
2.749 
2.850 
2.972 
3.073 
3.192 
3.271 
3.335 
3.374 
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TABLE 4. PARAMETERS USED IN SEMIEMPERICAL EQUATION [26]


Para. a/c ≤ 1 a/c > 1 

M1 
 
 

 
 

− 
c 

a
09.013.1  

 

 
 

 + 
a 

c
04.01 

a 

c 

M2 
c 

a
2.0 

89.0
54.0 

+ 
+− 

4 

a 

c
2.0  

 

 
 

 

M3 

24 

c 

a
114 

c 

a
65.0 

1
5.0  

 

 
 

 −+ 
+ 

− 
4 

a 

c
11.0  

 

 
 

− 

g1 
( 2 

2 

sin1 
t 

a
35.01.01 ϕ−

 
 
 

 

 
 
 

 
 
 

 
 

++ ( 2 
2 

sin1 
t 

a 

a 

c
35.01.01 ϕ−

 
 
 

 

 
 
 

 
 
 

 
 

 
 

 
 

++ 

g2 
2 

432 

13.01 

156.2578.1425.1358.01 

λ 

λλλλ 

+ 

+−++ 
2 

432 

13.01 

156.2578.1425.1358.01 

λ 

λλλλ 

+ 

+−++ 

g3 
( ( 

 
 
 

 

 
 
 

 
 
 

 
 

+−+ 
 

 
 

 + 
25.0 

2 

t 

a
15.085.0cos11.01 

c 

a
04.01 ϕ ( ( 

 
 
 

 

 
 
 

 
 
 

 
 

+−+ 
 

 
 

 + 
25.0 

2 

t 

a
15.085.0cos11.01 

a 

c
09.013.1 ϕ 

g4 
 
 


 
 

 − 
 


 
 

 − 
 


 
 

 −− 
c 

a
12.0 

c 

a 

t 

a
17.01 

1 

fϕ 

25.0 

22 

2 

cossin 
a 

c 

 
 
 

 

 
 
 

 
+ 

 

 
 

 ϕϕ 

25.0 

22 

2 

cossin 
a 

c 

 
 
 

 

 
 
 

 
+ 

 

 
 

 ϕϕ 

fw 

( 
( 

5.0 

t 

a 

c4cW4 

c2R2 
sec 

W2 

R 
sec 

 
 
 

 

 
 
 

 
 
 

 
 
 

 

+− 

+
 
 

 
 

 ππ ( 
( 

5.0 

t 

a 

c4cW4 

c2R2 
sec 

W2 

R 
sec 

 
 
 

 

 
 
 

 
 
 

 
 
 

 

+− 

+
 
 

 
 

 ππ 

λ ( ϕ85.0cos 
R 

c
1 

1 

+ ( ϕ85.0cos 
R 

c
1 

1 

+ 

) )

) ) ) ) 

) 
) 

) 
) 

) )
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